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Abstract— The paper presents the development of a new tuning 

method for fractional order PIλDµA controller. The basic ideas 

of this new tuning method are based, in the first place, on the 

classical tuning methods for setting the parameters of the 

fractional order PIλDµA controller for λ=µ=1, which means 

setting the parameters of the classical PIDA controller, and on 

the minimum of integral absolute error (IAE) criterion by 

using particle swarm optimisation (PSO) algorithm for setting 

the fractional integration action order λ and the fractional 

differentiation action order µ. It is clearly shown that the 

fractional order PIλDµA controller, which the parameters 

obtained by the proposed tuning method, gives better response 

than the classical one for the same system. 

 

Keywords— Integer order PIDA controller, Fractional order 

PIλDµA controller, PSO algorithm, IAE criterion, Induction 

motor. 

I. INTRODUCTION 

The most commonly and practically controller used in all 

industrial feedback control applications is the proportional-

integral-derivative (PID) controller. Many techniques have 

been suggested for their parameters tuning [1]-[3]. In many 

control application, the systems are modelled as a third order. 

PID controllers are unsuitable, especially for third-order 

systems. This is the reason that a new structure of the 

controller becomes the necessity of such systems.  

In 1996, Jung and Dorf have proposed a new structure of 

controller and termed as proportional-integral-derivative and 

acceleration (PIDA) controller [4]. A new analytical 

approach of the PIDA controller parameters design was 

proposed by Kitt’s [5]. A comparative design and analysis   

of PIDA controller was presented in [6].  

Fractional calculus is a mathematical topic with more than 

300 years old history but its application in physics and 

engineering has been reported only in recent years. In the 

last decades, besides the theoretical research in the field of 

fractional integrals and derivatives [7],[8], there are growing 

numbers of applications of fractional calculus in different 

areas of control engineering [9]-[11]. The idea of using 

fractional calculus in feedback control systems dates back to 

the early sixties. Oustaloup was the one who really 

introduced a fractional order controller [9]. More recently, 

Podlubny proposed a generalisation of the PID controller, 

namely the fractional order PIλDµ controller [10]. Many 

researchers have been interested in the use and tuning of this 

type of controller and more effort is being taken in order to 

define new effective tuning techniques for fractional order 

PIλDµ controllers using classical control theory [12]-[14]. 

Therefore, a possible way to enhance the performances of 

a feedback control system with the classical PIDA 

controllers is to extend the orders of integration and 

differentiation actions of the classical PIDA controller to real 

numbers instead of both limited to one. In this paper, we 

propose the design of the fractional order PIλDµA controller 

of a classical unity feedback control system whose plant’s 

transfer function is considered to be a third order system. 

The controller is the fractional order PIλDµA controller 

whose transfer function is given as:  
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With kp is the proportional constant, ki is the integration 

constant, kd is the differentiation constant, ka is the 

acceleration constant, λ is the fractional integration action 

order such that 0<λ<1 and µ is the fractional differentiation 

action order such that 0<µ<1.                                            

The proposed tuning method is based, in the first place, on 

any existed tuning methods for setting the parameters kp, ki, 

kd and ka of the fractional order PIλDµA controller for λ=µ=1 

which means setting the parameters of the classical PIDA 

controller. In this work, we have used Kitti’s and Jung-Dorf 

tuning methods [6]. Then using the parameters kp, ki, kd and 

ka obtained in the first step, the error function e(t)=r(t)-y(t), 

where the input r(t) is the unit step, is minimised through the 

IAE optimisation criterion to determine the optimum settings 

of the fractional integration action order λ and the fractional 

differentiation action order µ of the fractional PIλDµA 

controller. The IAE minimisation criterion is obtained by 

using PSO algorithm [15]. To use this PSO algorithm, the 

irrational transfer functions of the fractional order PIλDµA 

controller must be approximated by a rational function, in a 

given frequency band of practical interest using the 

singularity function method [16].  

The proposed tuning method can also use any already tuned 

classical PIDA controller by any method for the four 

parameters kp, ki, kd and ka and then determine the optimum 

settings of the fractional order integration λ and the 

fractional differentiation µ. The optimum tuning of the 

parameters of the fractional order PIλDµA controller is not 

the main objective of our proposed design method. Instead, 
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our objective is to enhance the control performances of the 

feedback control system already using a classical PIDA 

controller by just adding the fractional order integration λ 

and the fractional order differentiation µ. The paper is 

organised as follows: Section 2 introduces the approximation 

of the fractional integrator, differentiator and the fractional 

order PIλDµA controller by a rational function in a limited 

frequency band of interest. In section 3, we introduce the 

proposed tuning method for the fractional order PIλDµA 

controller. In section 4, an illustrative example is presented 

to demonstrate the advantages of the proposed tuning 

method. Finally, section 5 draws the main conclusions. 

II. APPROXIMATION OF FRACTIONAL ORDER PIDA 

CONTROLLER  

When fractional order controllers have to be implemented 

or simulations using them have to be performed, fractional 

order transfer functions are usually replaced by integer order 

transfer functions whose behaviour is close enough to the 

desired ones. There are many different ways to get such 

approximations, in our work; the singularity function method 

of approximation of the fractional order operators by rational 

transfer function has been used [16]. 

A. Fractional Order Integrator 

 In the frequency domain, the fractional order integrator, 

which is the integration action of the fractional order PIλDµA 

controller, is represented by the following irrational function: 

s

1
(s)CI =  (2) 

Where λ is a positive real number such that 0<λ<1. 

In a given frequency band of practical interest, the 

fractional order integrator of (2) is approximated by a 

rational function as [16]: 
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The gain KII, the poles pI‘s and the zeros zI‘s are given as in 

[16]. 

B. Fractional  Order Differentiator 

In the frequency domain, the fractional order 

differentiator, which is the differentiation action of the 

fractional order PIDA controller, is represented by the 

following irrational function: 

s=(s)CD  (4) 

Where µ is a positive real number such that 0<µ<1. 

In a given frequency band of practical interest, the 

fractional order differentiator of (4) is approximated by a 

rational function as [16]: 
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The gain KDD, the poles pd‘s and the zeros zd‘s are given as 

in [16]. 

C. Fractional Order PIλDµA Controller 

In sections II.A and II.B, we showed how we can 

approximate the fractional order integrator and differentiator 

by rational functions, in a given frequency band of practical 

interest; so (1) becomes: 

2)(.)(.)( sksCksCkksC aDdIipF +++=  (6) 

III. FRACTIONAL ORDER PIDA CONTROLLER TUNING 

In this paper we propose the design of the fractional order 

PIλDµA controller of a classical unity feedback control 

system shown in Fig.1.   

 

Fig. 1 Classical unity feedback control system 

 

The proposed tuning method is based, in the first place, on 

any existed classical PIDA controller. In this work, we have 

used classical PIDA controllers tuned by using Kitti’s and 

Jung-Dorf tuning methods [6]. The error function e(t)=r(t)-

y(t), where the input r(t) is the unit step, is minimised 

through the IAE optimisation criterion to determine the 

optimum settings of the fractional integration action order λ 

and the fractional differentiation action order µ of the 

fractional PIλDµA controller. The IAE minimisation criterion 

is obtained by using PSO algorithm [15].   

A. Particle Swarm Optimization (PSO) 

Our Particle Swarm Optimization algorithm is an 

intelligent optimization algorithm intimating the bird swarm 

behavior which was proposed by psychologist Kennedy and 

Dr. Eberhart in 1995 [15]. Compared to other optimization 

algorithms, the Particle Swarm Optimization is more 

objective, easy and performs well. It is applied in many 

fields such as the function optimization, the neural network 

training, the fuzzy system control, etc. In Particle Swarm 

Optimization algorithm, each individual is called “particle” 

which represents a potential solution. The algorithm 

achieves the best solution by the variability of some particles 

in the tracing space. The particles search in the solution 

space following the best particle by changing their positions 

and the fitness frequently; the flying direction and velocity 

are determined by the objective function.  
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Assuming ),...,,( 21 iDiii xxxX =  is the position of i-th 

particle in D-dimension, ),...,,( 21 iDiii vvvV =  is its velocity 

which represents its direction of searching. In iteration 

process, each particle keeps the best position pbest found by 

itself, besides, it also knows the best position gbest searched 

by the group particles, and changes its velocity according 

two best positions. The standard formula of Particle Swarm 

Optimization is as follow:  
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 In which: i=1,2,…N ; N the population of the group 

particles; d=1,2,…,D; k the maximum number of iteration; r1 

and r2 the random values in [0,1] used to keep the diversity 

of the group particles; c1 and c2 the learning coefficients, also 

they are called acceleration coefficients;  k

idv the number d 

component of the velocity of particle i in k-th iteration; k

idx  

the number d  component of the position of particle  i in k-th 

iteration; pid  the number d component of the best position 

particle i has ever found; pgd the number d component of the 

best position the group particles have ever found; w denotes 

the inertia weight factor.  

The procedure of standard Particle Swarm Optimization 

is given as following:  

Step1: Initialize the original position and velocity of 

particle swarm; 

Step 2: Calculate the fitness value of each particle; 

Step 3: For each particle, compare the fitness value with the      

fitness value of pbest, if current value is better, then 

renew the position with current position, and update 

the fitness value simultaneously; 

Step 4: Determine the best particle of group with the best 

 fitness value, if the fitness value is better than the  

fitness value of gbest, then update the gbest and its 

fitness value with the position; 

Step 5: Check the finalizing criterion, if it is satisfied, quit 

the iteration; otherwise, return to step 2. 

B. Tuning of the Parameters Kp, Ki, Kd and Ka 

Our tuning strategy is based, in the first place, on Kitti’s 

or Jung-Dorf tuning methods for setting the parameters Kp, 

Ki, Kd and Ka of the fractional PIλDµA controller for λ=µ=1 

which means setting the parameters fo a simple classical 

PIDA controller. 

C. Tuning of the parameters λ and µ 

With the parameters kp, ki, kd and ka obtained in the first 

step, we use the PSO algorithm [15] to determine the 

optimum settings of the fractional integration action order λ 

and the fractional differentiation action order µ of the 

fractional order PIλDµA controller. The PSO algorithm 

consists of finding, for a linear system, a controller 

minimising the IAE of a classical unity feedback control 

system for a unit step input. The IAE is given as: 


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Where e(t)=[r(t)-y(t)] is the error signal. 

IV. ILLUSTRATIVE EXAMPLE 

In this section, we will present two simulation examples 

for the same system by using two tuning methods of 

classical PIDA controller; this is to show the effectiveness of 

the proposed design method of the fractional PIDA 

controller in the performance enhancement of the feedback 

control system. 

A simplified induction motor position control proposed in 

[6] is used. The transfer function of the induction motor is 

given as: 

)0436.168921.25(

0436.168
)(
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=

sss
sG  (10) 

A. Case 1: 

In this case, first the parameters λ and µ are set to be 

λ=µ=1, which means the fractional order PIλDµA controller 

becomes a classical PIDA controller. Then using Jung-Dorf 

tuning method [6], the parameters kp, ki, kd and ka are found 

to be kp=12.2383, ki=21.8548, kd=2.4601 and ka=0.1268.   

For this case, the fractional order PIλDµA controller’s 

transfer function becomes: 

21268.04601.2
1

8548.212383.12)( ss
s

sCF +++= 



 

(11) 

To set the parameters λ and µ using our proposed method, 

CF(s) is approximated by a rational function using the 

method proposed in section II. 

From the simulation results, the minimum IAE index 

J(λ,µ) obtained, using PSO algorithm, correspond to the 

couple (λ,µ)=(0.0750,0.2553). Then the fractional order 

PIλDµA controller’s transfer function CF(s) required is given 

as: 
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Fig. 2 shows the step responses of the closed-loop control 

system with both the classical PIDA and the fractional order 

PIλDµA controllers in its rational form. Apparently, the 

fractional order PIλDµA controller shows a superior 

performance than the conventional PIDA controller, for the 

set-point response. 

For feedback control performance enhancement 

comparison, we have summarised some performance 

characteristics in Table I for the feedback control system 

with both controllers. It can be noticed that the fractional 

order PIλDµA controller obtained from the proposed tuning 

method can provide very satisfactory response better than 
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the classical PIDA controller in terms of overshoot (O%), 

settling time (St) and rise time (Rt). 

 

  

Fig. 2 Step responses of the closed-loop system with a classical PIDA 

controller (dashed line), and fractional PIλDµA controller (solid line) 

 

TABLE I 

TEMPORAL CHARACTERISTICS 

Controller Rt(0.1:0.9) St (2%) O % J 

PIDA 0.181 1.38 9.48 0.0714 

PI0.075D0.2553A 0.0791 0.486 2.29 0.0114 

 

B. Cas2: 

In this case, first the parameters λ and µ are set to be 

λ=µ=1, which means the fractional order PIλDµA controller 

becomes a classical PIDA controller. Then using Kitt’s 

tuning method [6], the parameters kp, ki, kd and ka are found 

to be kp=5.6672, ki=9.3764, kd=0.7027 and ka=0.0248. For 

this case, the fractional order PIDA controller’s transfer 

function becomes: 

20248.07027.0
1

3764.96672.5)( ss
s

sCF +++= 

  (13) 

To set the parameters λ and µ using our proposed method, 

CF(s) is approximated by a rational function using the 

method proposed in section II. 

From the simulation results, the minimum IAE index 

J(λ,µ) obtained, using PSO algorithm, correspond to the 

couple (λ,µ)=(0.0370,0.5663). Then the fractional order 

PIλDµA controller’s transfer function CF(s) required is given 

as: 
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Fig. 3 shows the step responses of the closed-loop control 

system with both the classical PIDA controller and the 

fractional order PIλDµA controller in its rational form. The 

performance improvement of the proposed fractional order 

PIλDµA control structure for set point change is clear. 

For feedback control performance enhancement 

comparison, we have summarised some performance 

characteristics in Table II for the feedback control system 

with both controllers. It can be noticed that the fractional 

order PIλDµA controller obtained from the proposed tuning 

method can provide very satisfactory response better than 

the classical PIDA controller in terms of smoothest and 

fastest response. 

 

 

Fig. 3 Step responses of the closed-loop system with a classical PIDA 

controller (dashed line), and fractional PIλDµA controller (solid line) 

 

TABLE III 

TEMPORAL CHARACTERISTICS 

Controller Rt(0.1:0.9) St (2%) O % J 

PIDA 0.278 1.59 21 0.3234 

PI0.037D0.5663A 0.151 0.805 4.4 0.1107 

 

V. CONCLUSION 

In this paper fractional order PIλDµA controller have been 

introduced. The novelty of the proposed controllers consists 

in the extension of integration and derivation order from 

integer to fractional numbers. This fact opens the way in the 

designing of more flexible class of controllers and therefore 

towards the solution of wider variety of control problems, 

such as, for example, the control of processes with 

resonances, integrators and unstable transfer functions.  

Our proposed fractional order PIλDµA controller is a 

generalization of the classical PIDA controller. The 

presented tuning method of the proposed fractional order 

PIλDµA controller is based on the idea of using Jung-Dorf or 

Kitt’s tuning methods and PSO algorithm. The parameters kp, 

ki, kd and ka of the fractional order PIλDµA controller for 

λ=µ=1, which means setting the parameters of the classical 

PIDA controller, have been computed from Jung-Dorf or 

Kitt’s tuning methods and the remaining parameters λ and µ 
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have been found from an optimization problem using PSO 

algorithm. 

Values of the fractional order PIλDµA controller 

parameters are tuned to achieve better step response. The 

simulation results demonstrated that the fractional order 

PIλDµA controller has better response than the classical 

PIDA controller. 

Our further research efforts include: testing on more 

type’s criterions, experiment on real plants. 
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